
1 www.cybus.io

Cybus Learn > Build and improve

Docker Basics
by Felix Kolwa

Prerequisites
• ●	Basic command line of your operating system in this case linux
• ●	Basic bash knowledge

Introduction
This article will be covering Docker including the following topics:
• ●	Installing	Docker
• ●	Raising	containers	from	the	command	line
• ●	Managing	containers	and	reading	log	output
• ●	Using	Dockerfiles
• ●	Scouting	docker	hub	for	fun	and	profit

What is Docker
Maybe	this	sounds	familiar.	You	have	been	assigned	a	task	in	which	you	had	to	deploy	a	complex	software	
onto	an	existing	infrastructure.	As	you	know	there	are	a	lot	of	variables	to	this	which	might	be	out	of	your	
control.	The	operating	system,	pre	existing	dependencies,	probably	even	 interfering	software.	Even	 if	 the	
environment is perfect at the moment of the deployment what happens after you are done? Living systems
constantly	change.	New	software	 is	 introduced	while	old	and	outdated	software	and	 libraries	are	getting	
removed.	Parts	of	the	system	that	you	rely	on	today	might	be	gone	tomorrow.
This	is	where	virtualization	comes	in.	It	used	to	be	best	practice	to	create	isolated	virtual	computer	systems,	
so	called	virtual	machines	(VMs),	which	simulate	independent	systems	with	their	own	operating	systems	and	
libraries.	Using	these	VMs	you	can	run	any	kind	of	software	in	a	separated	and	clean	environment	without	the	
fear	of	collisions	with	other	parts	of	the	system.	You	can	emulate	the	exact	hardware	you	need,	install	the	OS	
you	want	and	include	all	the	software	you	are	dependent	on	at	just	the	right	version.	It	offers	great	flexibility.
It	also	means	that	these	VMs	are	very	demanding	on	your	host	system.	The	hardware	has	to	be	strong	enough	
to	create	virtual	hardware	for	your	virtual	systems.	They	also	have	to	be	created	and	installed	for	every	virtual	
system	that	you	are	using.	Even	though	they	might	run	on	the	same	host	sharing	resources	between	them	is	
just	as	inconvenient	as	with	real	machines.
Introducing	the	container	approach	and	one	of	their	main	competitors,	Docker.	Simply	put,	Docker	enables	
you	 to	 isolate	your	software	 into	containers.	The	only	 thing	you	need	 is	a	 running	 instance	of	Docker	on	
your	host.	Even	better:	All	the	necessary	resources	like	OS	and	libraries	cannot	only	be	deployed	with	your	
software,	 they	 can	even	be	 shared	between	 individual	 instances	of	 your	 containers	 running	on	 the	 same	
system!	This	is	a	big	improvement	above	regular	VMs.	Sounds	too	good	to	be	true?

http://linuxcommand.org
https://linuxconfig.org/bash-scripting-tutorial-for-beginners

2 www.cybus.io

Cybus Learn > Build and improve

Well,	even	 though	Docker	comes	with	everything	you	need,	 it	 is	still	up	 to	you	 to	assure	consistency	and	
reproducibility	of	your	own	containers.	In	the	following	article	I	will	slowly	introduce	you	to	Docker	and	give	
you	the	basic	knowledge	necessary	to	be	part	of	the	containerized	world.

Getting Docker
Before	we	can	start	creating	containers	we	first	have	to	get	Docker	running	on	our	system.	Docker	is	available	
for	Linux,	Mac	and	just	recently	for	Windows	10.	Just	choose	the	version	that	is	right	for	you	and	come	back	
right here once you are done:
• ●	Linux(Ubuntu)
• ●	Windows	10
• ●	Mac
Please	notice	that	the	official	documentation	contains	instructions	for	multiple	Linux	distributions,	so	just	
choose	the	one	that	fits	your	needs.
Even	though	the	workflow	is	very	similar	for	all	platforms,	the	rest	of	the	article	will	assume	that	you	are	
running	an	Unix	environment.	Commands	and	scripts	can	vary	when	you	are	running	on	Windows	10.

Your first container
Got	Docker	installed	and	ready	to	go?	Great!	Let’s	get	our	hands	on	creating	the	first	container.	Most	tutorials	
will start off by running the tried and true „Hello World“ example but chances are you already did it when you
were	installing	Docker.
So	lets	start	something	from	scratch!	Open	your	shell	and	type	the	following:
 docker run -p 8080:80 httpd

If	everything	went	well	you	will	get	a	response	like	this:
 Unable to find image ‚httpd:latest‘ locally

 latest: Pulling from library/httpd

 f17d81b4b692: Pull complete

 06fe09255c64: Pull complete

 0baf8127507d: Pull complete

 07b9730387a3: Pull complete

 6dbdee9d6fa5: Pull complete

 Digest: sha256:90b34f4370518872de4ac1af696a90d982fe99b0f30c9be994964f49a6e2f421

 Status: Downloaded newer image for httpd:latest

 AH00558: httpd: Could not reliably determine the server‘s fully qualified domain

name, using 172.17.0.2. Set the ‚ServerName‘ directive globally to suppress this

message

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-windows/install/#about-windows-containers
https://docs.docker.com/docker-for-mac/install/

3 www.cybus.io

Cybus Learn > Build and improve

 AH00558: httpd: Could not reliably determine the server‘s fully qualified domain

name, using 172.17.0.2. Set the ‚ServerName‘ directive globally to suppress this

message

 [Mon Nov 12 09:15:49.813100 2018] [mpm_event:notice] [pid 1:tid 140244084212928]

AH00489: Apache/2.4.37 (Unix) configured -- resuming normal operations

 [Mon Nov 12 09:15:49.813536 2018] [core:notice] [pid 1:tid 140244084212928] AH00094:

Command line: ‚httpd -D FOREGROUND‘

Now	there	is	a	lot	to	go	through	but	first	open	a	browser	and	head	over	to	localhost:8080.

Yeah,	we	just	did	that!
What	we	just	achieved	is	we	set	up	and	started	a	simple	http	server	locally	on	port	8080	within	less	than	25	
typed	characters.	But	what	did	we	write	exactly?	Let’s	analyze	the	command	a	bit	closer:

• docker	–	This	states	that	we	want	to	use	the	Docker	command	line	interface	(CLI).
• run	–	The	first	actual	command.	It	states	that	we	want	to	run	a	command	in	a	new	container.
• -p 8080:80 –	The	publish	flag.	Here	we	declare	what	Docker	internal	port	(our	container)	we	want	to	

publish	to	the	host	(the	pc	you	are	sitting	at).	the	first	number	declares	the	port	on	the	host	(8080)	and	the	
second	the	port	on	the	Docker	container	(80).

• httpd	–	The	image	we	want	to	use.	This	contains	the	actual	server	logic	and	all	dependencies.

IMAGES
Okay,	so	what	is	an	image	and	where	does	it	come	from?	Quick	answer:	An	image	is	a	template	that	contains	
instructions	for	creating	a	container.	Images	can	be	hosted	locally	or	online.	Our	httpd	image	was	hosted	on	
the Docker Hub.	We	will	talk	more	about	the	official	docker	registry	in	the	Exploring	the	Docker	Hub	part	of	
this	lesson.

HELP
The	Docker	CLI	contains	a	thorough	manual.	So	whenever	you	want	more	details	about	a	certain	command	
just	add	--help	behind	the	command	and	you	will	get	the	man	page	regarding	the	command.

https://hub.docker.com/

4 www.cybus.io

Cybus Learn > Build and improve

Great!	Now	that	we	understand	what	we	did	we	can	take	a	look	at	the	output.

 Unable to find image ‚httpd:latest‘ locally

 latest: Pulling from library/httpd

 f17d81b4b692: Pull complete

 06fe09255c64: Pull complete

 0baf8127507d: Pull complete

 07b9730387a3: Pull complete

 6dbdee9d6fa5: Pull complete

 Digest: sha256:90b34f4370518872de4ac1af696a90d982fe99b0f30c9be994964f49a6e2f421

 Status: Downloaded newer image for httpd:latest

The httpd image we used was not found locally so Docker automatically downloaded the image and all
dependencies	for	us.	It	also	provides	us	with	a	digest	for	our	just	created	container.	This	string	starting	with	
sha256	can	be	very	useful	for	us!	Imagine	that	you	create	software	that	is	based	upon	a	certain	image.	By	
binding the image to this digest you make sure that you are always pulling and using the same version of the
container	and	thus	ensuring	reproducibility	and	improving	stability	of	your	software.
While the rest of the output is internal output from our small webserver you might have noticed that the
command	prompt	did	not	return	to	input	once	the	container	started.	This	is	because	we	are	currently	running	
the	container	in	forefront.	All	output	that	our	container	generates	will	be	visible	in	our	shell	window	while	
we	 are	 running	 it.	 You	 can	 try	 this	 by	 reloading	 the	 webpage	 of	 our	 webserver.	 Once	 the	 connection	 is	
reestablished the container should log something similar to this:

 172.17.0.1 - - [12/Nov/2018:09:17:12 +0000] „GET / HTTP/1.1“ 304 -

You	might	have	also	noticed	 that	 the	 ip	address	 is	not	 the	one	 from	your	 local	machine.	This	 is	because	
Docker	creates	containers	in	their	own	Docker	network.	Explaining	Docker	networks	is	out	of	scope	for	this	
tutorial	so	I	will	just	redirect	you	to	the	official	documentation	about	Docker networks	for	the	time	being.

For	now,	stop	the	container	and	return	to	the	command	prompt	by	pressing	ctrl+c	while	the	shell	window	is	
in	focus.

Managing containers

Detaching containers
Now	that	we	know	how	to	run	a	container	it	is	clear	that	having	them	run	in	an	active	window	isn’t	always	
practical.	Let’s	start	the	container	again	but	this	time	we	will	add	a	few	things	to	the	command:

https://docs.docker.com/network/

5 www.cybus.io

Cybus Learn > Build and improve

 docker run --name serverInBackground -d -p 8080:80 httpd

When you run the command you will notice two things: First the command will execute way faster then the
first	time.	This	is	because	the	image	that	we	are	using	was	already	downloaded	the	last	time	and	is	currently	
hosted	locally	on	our	machine.	Second,	there	is	no	output	anymore	besides	a	strange	string	of	characters.	
This	string	is	the	ID	of	our	container.	It	can	be	used	to	refer	to	its	running	instance.

So	what	are	those	two	new	flags?

• ●	--name	–	This	 is	a	 simple	one.	 It	 attaches	a	human	 readable	name	 to	our	container	 instance.	While	
the	container	ID	is	nice	to	work	with	on	a	deeper	level,	attaching	an	actual	name	to	it	makes	it	easier	to	
distinguish	between	running	containers	for	us	as	human	beings.	Just	keep	in	mind	that	IDs	are	unique	and	
your attached name might not!

• ● -d	–	This	stands	for	detach	and	makes	our	container	run	in	the	background.	It	also	provides	us	with	the	
container	ID.

SHARING	RESOURCES	
If	you	want	to	you	can	execute	the	above	command	with	different	names	and	ports	as	many	times	as	you	
wish.	While	you	can	have	multiple	containers	running	httpd	they	will	all	be	sharing	the	same	image.	No	need	
to	download	or	copy	what	already	have	on	your	host.

Listing containers
So	now	that	we	started	our	container	make	sure	that	it	is	actually	running.	Last	time	we	opened	our	browser	
and	accessed	the	webpage	hosted	on	the	server.	This	time	let’s	take	another	approach.	Type	the	following	in	
the command prompt:

docker ps

The output should look something like this:

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

 018acb9dbbbd httpd „httpd-foreground“ 11 minutes ago Up 11 minutes

0.0.0.0:8080->80/tcp serverInBackground

6 www.cybus.io

Cybus Learn > Build and improve

• ps	–	The	ps	command	prints	all	running	container	instances	including	information	about	ID,	image,	ports	
and	 even	name.	 The	 output	 can	be	 filtered	 by	 adding	 flags	 to	 the	 command.	 To	 learn	more	 just	 type	
docker ps --help.

Inspecting containers
Another	important	ability	is	to	get	low	level	information	about	the	configuration	of	a	certain	container.	You	
can get these information by typing:

 docker inspect serverInBackground

Notice	that	is	doesn’t	matter	if	you	use	the	attached	name	or	the	container	ID.	Both	will	give	you	the	same	
result.
The output of this command is huge and includes everything from information about the image itself to
network	configuration.

HINT
You	can	execute	the	same	command	using	a	image	id	to	inspect	the	template	configuration	of	the	image.

To learn more about inspecting docker containers please refer to the official	documentation.

Crawling inside the container
We	can	even	go	in	deeper	and	interact	with	the	internals	of	the	container.	Say	we	want	to	try	changes	to	our	
running	container	without	having	to	shut	it	down	and	restart	it	every	time.	So	how	do	we	approach	this?
Like	a	 lot	of	Docker	 images,	httpd	is	based	upon	a	Linux	image	itself.	 In	this	case	httpd	is	running	a	slim	
version	of	Debian	in	the	background.	So	being	a	Linux	system	we	can	access	a	shell	inside	the	container.	This	
gives	us	a	working	environment	that	we	are	already	familiar	with.	Let’s	jump	in	and	try	it:

 docker exec -it -u 0 serverInBackground bash

There are a few new things to talk about:

• exec	–	This	allows	us	to	execute	a	command	inside	a	running	container.
• -it	–	These	are	actually	two	flags. -i -t would	have	the	same	result.	While	i	stands	for	interactive	(we	

need	it	to	be	interactive	if	we	want	to	use	the	shell)	t	stands	for	TTY	and	creates	a	pseudo	version	of	the	
Teletype	Terminal.	A	simple	text	based	terminal.

• -u 0	–	This	flag	specifies	the	UID	of	the	user	we	want	to	log	in	as.	0	opens	the	connection	as	root	user.
• serverInBackground	–	The	container	name	(or	ID)	that	we	want	the	command	to	run	in.

https://docs.docker.com/engine/reference/commandline/inspect/

7 www.cybus.io

Cybus Learn > Build and improve

• bash	–	At	the	end	we	define	what	we	actually	want	to	run	in	the	container.	In	our	case	this	is	the	bash	
environment.	Notice	that	bash	is	installed	in	this	image.	This	might	not	always	be	the	case!	To	be	safe	you	
can add sh instead of bash.	This	will	default	back	to	a	very	stripped	down	shell	environment	by	default.

When	you	execute	 the	command	you	will	 see	a	new	shell	 inside	 the	container.	Try	moving	around	 in	 the	
container	and	use	commands	you	are	familiar	with.	You	will	notice	that	you	are	missing	a	lot	of	capabilities.	
This	has	to	be	expected	on	a	distribution	that	is	supposed	to	be	as	small	as	possible.	Thankfully	httpd	includes	
the apt	packaging	manager	so	you	can	expend	the	capabilities.	When	you	are	done,	You	can	exit	the	shell	
again by typing exit.

Getting log output
Sometimes	something	inside	your	containers	just	won’t	work	and	you	can’t	find	out	why	by	blindly	stepping	
through	your	configuration.	This	is	where	the	Docker	logs	come	in.
To see logs from a running container just type this:
 docker logs serverInBackground -f --tail 10

Once	again	there	are	is	a	new	command	and	a	few	new	flags	for	us:
• ●	logs	–	This	command	fetches	the	logs	printed	by	a	specific	container.
• ●	-f –	Follow	the	log	output.	This	is	very	handy	for	debugging.	With	this	flag	you	get	a	real	time	update	of	

the	container	logs	while	they	happen.
• ●	--tail	–	Chances	are	your	container	 is	running	for	days	 if	not	months.	Printing	all	 the	 logs	 is	rarely	

necessary	if	not	even	bad	practice.	By	using	the
• ●	tail	flag	you	can	specify	the	amount	of	lines	to	be	printed	from	the	bottom	of	the	file.

You	can	quit	the	log	session	by	pressing	ctrl+c while	the	shell	is	in	focus.

Stopping a detached container
If	 you	have	 to	shutdown	a	 running	container	 the	most	graceful	way	 is	 to	stop	 it.	The	command	 is	pretty	
straight forward:
 docker stop serverInBackground

This	will	 try	 to	 shutdown	 the	 container	 and	 kill	 it,	 if	 it	 is	 not	 responding.	Keep	 in	mind	 that	 the	 stopped	
container	is	not	gone!	You	can	restart	the	container	by	simply	writing
 docker start serverInBackground

Killing the container – a last resort
Sometimes	if	something	went	really	wrong,	your	only	choice	is	to	take	down	a	container	as	quickly	as	possible.
 docker kill serverInBackground

8 www.cybus.io

Cybus Learn > Build and improve

NOTE
Even	though	this	will	get	 the	 job	done,	killing	a	container	might	 lead	to	unwanted	side	effects	due	to	not	
shutting	it	down	correctly.

Removing a container
As	we	already	mentioned,	stopping	a	container	does	not	remove	it.	To	show	that	a	stopped	container	is	still	
managed in the background just type the following:
 docker container ls -a

• container	–	This	accesses	the	container	interaction.
• ls	–	Outputs	a	list	of	containers	according	to	the	filters	supplied.
• -a –	Outputs	all	containers,	even	those	not	running.

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

ee437314785f httpd „httpd-foreground“ About a minute ago Exited (0) 8 seconds

ago serverInBackground

As	you	can	see	even	though	we	stopped	the	container	it	is	still	there.	To	get	rid	of	it	we	have	to	remove	it.
Just	run	this	command:
 docker rm serverInBackground

When you now run docker container ls -a again you will notice that the container tagged
serverInBackground	is	gone.	Keep	in	mind	that	this	only	removes	the	stopped	container!	The	image	you	
used	to	create	the	container	will	still	be	there.
Removing	the	image
The	time	might	come	in	which	you	don’t	need	a	certain	image	anymore.	You	can	remove	a	image	the	same	
way	you	remove	a	container.	To	get	the	id	of	the	image	you	want	to	remove	you	can	run	the	docker	image	ls	
command	from	earlier.	Once	you	know	what	you	want	to	remove	type	the	following	command:
 docker rmi <IMAGE-ID>

This	will	the	image	if	it	is	not	needed	anymore	by	running	docker	instances.

9 www.cybus.io

Cybus Learn > Build and improve

Exploring the Docker Hub

You	might	have	asked	yourself	where	this	mysterious	httpd	image	comes	from	or	how	I	know	which	Linux	
distro	it	is	based	on.	Every	image	you	use	has	to	be	hosted	somewhere.	This	can	either	be	done	locally	on	
your	machine	or	a	dedicated	repository	in	your	company	or	even	online	through	a	hosting	service.	The	official	
Docker	Hub	is	one	of	those	repositories.	Head	over	to	the Docker Hub	and	take	a	moment	to	browse	the	site.	
When	creating	your	own	containers	it	is	always	a	good	idea	not	to	reinvent	the	wheel.	There	are	thousands	of	
images	out	there	spreading	from	small	web	servers	(like	our	httpd	image)	to	full	fledged	operating	systems	
ready	at	your	disposal.	Just	type	a	keyword	in	the	search	field	at	the	top	of	the	page	(web	server	for	example)	
and take a stroll through the offers available or just check out the httpd	repo.	Most	of	these	images	hosted	here	
offer	help	regarding	dependencies	or	installation.	Some	of	them	even	include	information	about	something	
called	a	Dockerfile..

Writing a Dockerfile
While	creating	containers	from	the	command	line	is	pretty	straight	forward,	there	are	certain	situations	in	
which	you	don’t	want	 to	configure	 these	containers	by	hand.	Luckily	enough	we	have	another	option,	 the	
Dockerfile.	If	you	have	already	taken	a	look	at	the	example	files	provided	for	httpd you might have an idea
about	what	you	can	expect.
So	go	ahead	and	create	a	new	file	called	‚Dockerfile‘	(mind	the	capitalization).	We	will	add	some	content	to	
this	file:
FROM httpd:2.4

COPY ./html/ /usr/local/apache2/htdocs/

https://hub.docker.com/
https://hub.docker.com/_/httpd/
https://hub.docker.com/_/httpd/

10 www.cybus.io

Cybus Learn > Build and improve

This	is	a	very	barebone	Dockerfile.	It	basically	just	says	two	things:
• ●	FROM–	Use	the	provided	image	with	the	specified	version	for	this	container.
• ●	COPY–	Copy	the	content	from	the	first	path	on	the	host	machine	to	the	second	path	in	the	container.

So	what	the	Dockerfile	currently	says	is:	Use	the	image	known	as	httpd	in	version	2.4,	copy	all	the	files	from	
the	sub	folder	‚./html‘	to	‚/usr/local/apache2/htdocs/‘	and	create	a	new	image	containing	all	my	changes.
For	extra	credit:	Remember	the	digest	from	before?	You	can	use	the	digest	to	pin	our	new	image	to	the	httpd	
image	version	we	used	in	the	beginning.	The	syntax	for	this	is:
FROM <IMAGENAME>@<DIGEST-STRING>

Now,	it	would	be	nice	to	have	something	that	can	actually	be	copied	over.	Create	a	folder	called	html and
create	a	small	index.html	file	in	there.	If	you	don’t	feel	like	writing	one	on	your	own	just	use	mine:

<!DOCTYPE html>

<html>

 <body>

 <h1>That‘s one small step for the web,</h1>

 <p>one giant leap for containerization.</p>

 </body>

</html>

Open	a	shell	window	in	the	exact	 location	where	you	placed	your	Dockerfile	and	html	folder	and	type	the	
following command:
 docker build . -t my-new-server-image

• ●	build–	The	command	for	building	images	from	Dockerfiles
• ●	. – The build	command	expects	a	path	as	second	parameter.	The	dot	refers	to	the	current	location	of	

the	shell	prompt.
• ●	-t –	The	tag	flag	sets	a	name	for	the	image	that	it	can	be	referred	by.

The shell output should look like this:

 Sending build context to Docker daemon 3.584kB

 Step 1/2 : FROM httpd:2.4

 ---> 55a118e2a010

 Step 2/2 : COPY ./html/ /usr/local/apache2/htdocs/

 ---> Using cache

 ---> 867a4993670a

 Successfully built 867a4993670a

 Successfully tagged my-new-server-image:latest

11 www.cybus.io

Cybus Learn > Build and improve

You	can	make	sure	that	your	newly	created	image	is	hosted	on	your	local	machine	by	running
 docker image ls

This	will	show	you	all	images	hosted	on	your	machine.
We	can	finally	run	our	modified	httpd	image	by	simply	typing:
 docker run --name myModifiedServer -d -p 8080:80 my-new-server-image

This	command	should	look	familiar	by	now.	The	only	thing	we	changed	is	that	we	are	not	using	the	httpd	
image	anymore.	Instead	we	are	referring	to	our	newly	created	‚my-new-server-image‘.
Let’s see if everything is working by opening the Server	in	a	browser.

	I	think	it	is	time	for	us	to	pat	ourselves	on	the	back.	We	did	good	today!

Summary

By	 the	 time	 you	 reached	 these	 lines	 you	 should	 be	 able	 to	 create,	monitor	 and	 remove	 containers	 from	
preexisting	images	as	well	as	create	new	ones	using	Dockerfiles.	You	should	also	have	a	basic	understanding	
of	how	to	inspect	and	debug	running	containers.

Where to go from here

As	was	to	be	expected	from	a	basic	lesson	there	is	still	a	lot	to	cover.	A	good	place	to	start	is	the	Docker
documentation	itself.	Another	topic	we	didn’t	even	touch	is	Docker	Compose,	which	provides	an	elegant	way	
to	orchestrate	groups	of	containers.

http://localhost:8080
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/compose/

12 www.cybus.io

Cybus Learn > Build and improve

Cybus is a specialist for secure IIoT Edge software, headquartered in Germany. Cybus Connectware serves smart factories

as a universal Edge and DevOps hub. Machine builders and providers of IIoT services use the Cybus Connectware as

a software-based gateway. As early as 2017, Cybus published the first secure industrial connector for machine data

according to today‘s DIN SPEC 27070 standard. Industry analyst Gartner named Cybus a worldwide „Cool Vendor“.

Today, the company counts medium-sized and large companies from numerous industrial sectors such as mechanical

engineering, automotive and aviation among its customers.

Cybus GmbH · Osterstraße 124 · 20255 Hamburg · Germany · www.cybus.io · hello@cybus.io · (+49) 40 228 58 68 51

LEARN	MORE
• Official	Docker	site
• Official	documentation
• Dockerfiles
• Docker networks
• Docker	Compose
• Docker Hub

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/

